Parallel processing of remotely sensed hyperspectral imagery: full-pixel versus mixed-pixel classification
نویسنده
چکیده
The rapid development of space and computer technologies allows for the possibility to store huge amounts of remotely sensed image data, collected using airborne and satellite instruments. In particular, NASA is continuously gathering high-dimensional image data with Earth observing hyperspectral sensors such as the Jet Propulsion Laboratory’s airborne visible–infrared imaging spectrometer (AVIRIS), which measures reflected radiation in hundreds of narrow spectral bands at different wavelength channels for the same area on the surface of the Earth. The development of fast techniques for transforming massive amounts of hyperspectral data into scientific understanding is critical for space-based Earth science and planetary exploration. Despite the growing interest in hyperspectral imaging research, only a few efforts have been devoted to the design of parallel implementations in the literature, and detailed comparisons of standardized parallel hyperspectral algorithms are currently unavailable. This paper compares several existing and new parallel processing techniques for pure and mixed-pixel classification in hyperspectral imagery. The distinction of pure versus mixed-pixel analysis is linked to the considered application domain, and results from the very rich spectral information available from hyperspectral instruments. In some cases, such information allows image analysts to overcome the constraints imposed by limited spatial resolution. In most cases, however, the spectral bands collected by hyperspectral instruments have high statistical correlation, and efficient parallel techniques are required to reduce the dimensionality of the data while retaining the spectral information that allows for the separation of the classes. In order to address this issue, this paper also develops a new parallel feature extraction algorithm that integrates the spatial and spectral information. The proposed technique is evaluated (from the viewpoint of both classification accuracy and parallel performance) and compared with other parallel techniques for dimensionality reduction and classification in the context of three representative application case
منابع مشابه
Generation of remotely sensed reference data using low altitude, high spatial resolution hyperspectral imagery
Exploitation of imaging spectroscopy (hyperspectral) data using classification and spectral unmixing algorithms is a major research area in remote sensing, with reference data required to assess algorithm performance. However, we are limited by our inability to generate rapid, accurate, and consistent reference data, thus making quantitative algorithm analysis difficult. As a result, many inves...
متن کاملMultiple Instance Hyperspectral Target Characterization
In this paper, two methods for multiple instance target characterization, MI-SMF and MI-ACE, are presented. MISMF and MI-ACE estimate a discriminative target signature from imprecisely-labeled and mixed training data. In many applications, such as sub-pixel target detection in remotely-sensed hyperspectral imagery, accurate pixel-level labels on training data is often unavailable and infeasible...
متن کاملOn the use of parallel computing to process multichannel imagery via extended morphological operations
Multichannel images are characteristic of certain applications, such as medical imaging or remotely sensed data analysis. In such images, each pixel is given by a vector of values. Due to the large data volumes often associated with multichannel imagery, there is a need for parallel algorithms able to process those data quickly enough for practical use. This paper describes a parallel implement...
متن کاملNear real-time endmember extraction from remotely sensed hyperspectral data using NVidia GPUs
One of the most important techniques for hyperspectral data exploitation is spectral unmixing, which aims at characterizing mixed pixels. When the spatial resolution of the sensor is not fine enough to separate different spectral constituents, these can jointly occupy a single pixel and the resulting spectral measurement will be a composite of the individual pure spectra. The N-FINDR algorithm ...
متن کاملFPGA Design and Implementation of a Fast Pixel Purity Index Algorithm for Endmember Extraction in Hyperspectral Imagery
Hyperspectral imagery is a class of image data which is used in many scientific areas, most notably, medical imaging and remote sensing. It is characterized by a wealth of spatial and spectral information. Over the last years, many algorithms have been developed with the purpose of finding “spectral endmembers,” which are assumed to be pure signatures in remotely sensed hyperspectral data sets....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Concurrency and Computation: Practice and Experience
دوره 20 شماره
صفحات -
تاریخ انتشار 2008